Model Uncertainty, State Uncertainty, and State-space Models
نویسندگان
چکیده
State-space models have been increasingly used to study macroeconomic and financial problems. A state-space representation consists of two equations, a measurement equation which links the observed variables to unobserved state variables and a transition equation describing the dynamics of the state variables. In this paper, we show that a classic linear-quadratic macroeconomic framework which incorporates two new assumptions can be analytically solved and explicitly mapped to a state-space representation. The two assumptions we consider are the model uncertainty due to concerns for model misspecification (robustness) and the state uncertainty due to limited information constraints (rational inattention). We show that the state-space representation of the observable and unobservable can be used to quantify the key parameters on the degree of model uncertainty. We provide examples on how this framework can be used to study a range of interesting questions in macroeconomics and international economics.
منابع مشابه
Modeling Stock Return Volatility Using Symmetric and Asymmetric Nonlinear State Space Models: Case of Tehran Stock Market
Volatility is a measure of uncertainty that plays a central role in financial theory, risk management, and pricing authority. Turbulence is the conditional variance of changes in asset prices that is not directly observable and is considered a hidden variable that is indirectly calculated using some approximations. To do this, two general approaches are presented in the literature of financial ...
متن کاملA Linear Approach to the Control of Vortex Induced Vibrations of Circular Cylinders with a 2-D Van der Pol Model for Structural Oscillator
In the present paper, a new 2-D Van der Polstructural oscillator model is introduced for the vortex induced vibrations of circular cylinders.The main purpose of this task is to control the recently introduced model by means of modern control definitions in state space. In order to control the system, the whole model is linearized about its equilibrium point by deriving state-space matrices. The...
متن کاملTransmission Congestion Management Considering Uncertainty of Demand Response Resources’ Participation
Under the smart grid environment, demand response resources (DRRs) are introduced as a virtual power plant to enhance power system adequacy. DRRs often fail to reduce their load due to some external factors. In this paper, a reliability model of a DRR is constructed as multi-state conventional generation units, where the probability, frequency of occurrence, and departure rate of each state can...
متن کاملAn iterative method for forecasting most probable point of stochastic demand
The demand forecasting is essential for all production and non-production systems. However, nowadays there are only few researches on this area. Most of researches somehow benefited from simulation in the conditions of demand uncertainty. But this paper presents an iterative method to find most probable stochastic demand point with normally distributed and independent variables of n-dime...
متن کاملIntegrated Inspection Planning and Preventive Maintenance for a Markov Deteriorating System Under Scenario-based Demand Uncertainty
In this paper, a single-product, single-machine system under Markovian deterioration of machine condition and demand uncertainty is studied. The objective is to find the optimal intervals for inspection and preventive maintenance activities in a condition-based maintenance planning with discrete monitoring framework. At first, a stochastic dynamic programming model whose state variable is the ...
متن کامل